Abstract

Algorithm fairness is an established line of research in the machine learning domain with substantial work while the equivalent in the recommender system domain is relatively new. In this article, we consider rating-based recommender systems which model the recommendation process as a prediction problem. We consider different types of biases that can occur in this setting, discuss various fairness definitions, and also propose a novel bias mitigation strategy to address potential unfairness in a rating-based recommender system. Based on an analysis of fairness metrics used in machine learning and a discussion of their applicability in the recommender system domain, we map the proposed metrics from the two domains and identify commonly used concepts and definitions of fairness. Finally, to address unfairness and potential bias against certain groups in a recommender system, we develop a bias mitigation algorithm and conduct case studies on one synthetic and one empirical dataset to show its effectiveness. Our results show that unfairness can be significantly lowered through our approach and that bias mitigation is a fruitful area of research for recommender systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.