Abstract

Artificial-intelligence-assisted decision-making is appearing increasingly more frequently in our daily lives; however, it has been shown that biased data can cause unfairness in decision-making. In light of this, computational techniques are needed to limit the inequities in algorithmic decision-making. In this letter, we present a framework to join fair feature selection and fair meta-learning to do few-shot classification, which contains three parts: (1) a pre-processing component acts as an intermediate bridge between fair genetic algorithm (FairGA) and fair few-shot (FairFS) to generate the feature pool; (2) the FairGA module considers the presence or absence of words as gene expression, and filters out key features by a fairness clustering genetic algorithm; (3) the FairFS part carries out the task of representation and fairness constraint classification. Meanwhile, we propose a combinatorial loss function to cope with fairness constraints and hard samples. Experiments show that the proposed method achieves strong competitive performance on three public benchmarks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call