Abstract

Few-shot classification is a challenging task which aims to formulate the ability of humans to learn concepts from limited prior data and has drawn considerable attention in machine learning. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained to learn the ability of handling classification tasks on extremely large or infinite episodes representing different classification task, each with a small labeled support set and its corresponding query set. In this work, we advance this few-shot classification paradigm by formulating it as a supervised classification learning problem. We further propose multi-episode and cross-way training techniques, which respectively correspond to the minibatch and pretraining in classification problems. Experimental results on a state-of-the-art few-shot classification method (prototypical networks) demonstrate that both the proposed training strategies can highly accelerate the training process without accuracy loss for varying few-shot classification problems on Omniglot and miniImageNet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.