Abstract

In previous work (Peters and Poort, 1983), the stress distribution in axisymmetric models of restored teeth was analyzed by finite element analysis (FEA). To compare the tri-axial stress state at different sites, they calculated the Von Mises equivalent stress and used it as an indication for weak sites. However, the use of Von Mises' theory for material failure requires that the compressive and tensile strengths be equal, whereas for composite resin the compressive strength values are, on the average, eight times larger than the tensile strength values. The objective of this study was to investigate the applicability of a modified Von Mises and the Drücker-Prager criterion to describe mechanical failure of composite resin. In these criteria, the difference between compressive and tensile strength is accounted for. The stress criteria applied to an uni-axial tensile stress state are compared with those applied to a tri-axial tensile stress state. The uni-axial state is obtained in a Rectangular Bar (RB) specimen and the tri-axial state in a Single-edge Notched Bend (SENB) specimen with a chevron notch at midspan. Both types of specimens, made of light-cured composite, were fractured in a three-point bend test. The size of the specimens was limited to 16 mm x 2 mm x 2 mm (span, 12 mm). Load-deflection curves were recorded and used for linear elastic FEA. The results showed that the Drücker-Prager criterion is a more suitable criterion for describing failure of composite resins due to multi-axial stress states than are the Von Mises criterion and the modified Von Mises criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.