Abstract

The High Average Power Laser (HAPL) project is pursuing development of an IFE power reactor using a solid first wall chamber. Tungsten has been chosen as the primary candidate armor material protecting the low activation ferritic steel chamber wall structure. The tungsten armor is less than 1-mm thick and is applied by vacuum plasma spraying (VPS). The failure strength of the tungsten-armor is critical, which is measured using a state-of-the-art spallation technology developed at UCLA. A nano-second laser is used to propagate a compression/tension stress wave through the composite layered structure. The tensile strength in the coating is then related to the displacement velocity of the free surface of the tungsten coating. VPS tungsten coated steel samples were tested using the laser spallation technique and coating strengths were evaluated and are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.