Abstract

The local failure strains of essential design elements of a reactor vessel are investigated. The size influence of the structure is of special interest. Typical severe accident conditions including elevated temperatures and dynamic loads are considered. The main part of work consists of test families with specimens under uniaxial and biaxial load. Within one test family the specimen geometry and the load conditions are similar, but the size is varied up to reactor dimensions. Special attention is given to geometries with a hole or a notch causing non-uniform stress and strain distributions typical for the reactor vessel. A key problem is to determine the local failure strain. Here suitable methods had to be developed including the so-called “vanishing gap method”, and the “forging die method”. They are based on post-test geometrical measurements of the fracture surfaces and reconstructions of the related strain fields using finite element models. The results indicate that stresses versus dimensionless deformations are approximately size independent up to failure for specimens of similar geometry under similar load conditions. Local failure strains could be determined. The values are rather high and size dependent. Statistical evaluation allow the proposal of limit strains which are also size dependent. If these limit strains are not exceeded, the structures will not fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.