Abstract

In this work, we use an in-vitro mechanical test to explore the resistance of biaxially stretched vena cava tissue against deep perforation and a methodology which integrates experimental and numerical modeling to identify constitutive fracture properties of the vena cava. Six sheep vena cava were harvested just after killing, and cyclic uniaxial tension tests in longitudinal and circumferential directions and biaxial deep penetration tests were performed. After that, we use a nonlinear finite element model to simulate in vitro penetration of the cava tissue in order to fit the fracture properties under penetration of the vena cava by defining a cohesive fracture zone. An iterative process was developed in order to fit the fracture properties of the vena cava using the previously obtained experimental results. The proposed solutions were obtained with fracture energy of 0.22 or 0.33 N/mm. In comparison with the experimental data, the simulation using [Formula: see text], [Formula: see text], and [Formula: see text] parameters ([Formula: see text]) is in good agreement with results from penetration experiments of cava tissue. It is noticeable that the parameter estimation process of the fracture behavior is more accurate than the estimation process of the elastic behavior for the toe region of the curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.