Abstract
We first show that the currently accepted statistical mechanics for granular matter is flawed. The reason is that it is based on the volume function, which depends only on a minute fraction of all the structural degrees of freedom and is unaffected by most of the configurational microstates. Consequently, the commonly used partition function underestimates the entropy severely. We then propose a new formulation, replacing the volume function with a connectivity function that depends on all the structural degrees of freedom and accounts correctly for the entire entropy. We discuss the advantages of the new formalism and derive explicit results for two- and three-dimensional systems. We test the formalism by calculating the entropy of an experimental two-dimensional system, as a function of system size, and showing that it is an extensive variable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.