Abstract

We construct an Enriques surface X over Q with empty étale-Brauer set (and hence no rational points) for which there is no algebraic Brauer–Manin obstruction to the Hasse principle. In addition, if there is a transcendental obstruction on X, then we obtain a K3 surface that has a transcendental obstruction to the Hasse principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.