Abstract

We show how to construct counter-examples to the Hasse principle over the field of rational numbers on Atkin–Lehner quotients of Shimura curves and on twisted forms of Shimura curves by Atkin–Lehner involutions. A particular example is the quotient of the Shimura curve X23∙107 attached to the indefinite rational quaternion algebra of discriminant 23∙107 by the Atkin–Lehner involution ω107. The quadratic twist of X23∙107 by Q( √ −23) with respect to this involution is also a counter-example to the Hasse principle over Q.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.