Abstract
Using spin-wave theory, we show that geometric frustration fails to preserve a two-dimensional spin fluid. Even though frustration can remove the interlayer coupling in the ground-state of a classical anti-ferromagnet, spin layers innevitably develop a quantum-mechanical coupling via the mechanism of ``order from disorder''. We show how the order from disorder coupling mechanism can be viewed as a result of magnon pair tunneling, a process closely analogous to pair tunneling in the Josephson effect. In the spin system, the Josephson coupling manifests itself as a a biquadratic spin coupling between layers, and for quantum spins, these coupling terms are as large as the inplane coupling. An alternative mechanism for decoupling spin layers occurs in classical XY models in which decoupled "sliding phases" of spin fluid can form in certain finely tuned conditions. Unfortunately, these finely tuned situations appear equally susceptible to the strong-coupling effects of quantum tunneling, forcing us to conclude that in general, geometric frustration cannot preserve a two-dimensional spin fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.