Abstract

This work focuses on the failure mechanisms of concrete hydroelectric facilities affected by alkali–aggregate reaction (AAR). Identification of potential failure mechanisms is based on an original “top-down approach” using an AAR pushover analysis with multi-physics numerical simulation of a representative hydroelectric facility. Different global rehabilitation scenarios based on slot-cutting and grouting techniques are discussed and compared, using different performance metrics. A new quantitative performance metric, specifically developed for the nonlinear sophisticated analysis tool and considering the volumetric cracking caused by AAR is also suggested. Based on comparison results, a combination of grouting after a partial slot-cutting in the neighborhood of the discontinuities, appears to provide the best compromise in terms of stress relief and extent of cracking. New AAR benchmark problems, issued from the top-down approach, are also suggested for the first time in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call