Abstract
AbstractHere, the limitations of characteristic length‐based (Lchb) and grain size‐based (Gb) criteria with two or three parameters were pointed out employing the apparent toughness tests of 12 different ceramics at a large span range of U‐notch root radius (ρ) values. After comprehensively considering the potential influencing factors of stress intensity factor (Kc), ρ divided by critical notch tip radius (ρc) was proposed as the independent variable, and the data of 21 materials (covering ceramics, plastics, resins, rocks, and metals) was summarized and discussed to establish a simple and more applicable Kc prediction model. Results indicated that Kc/KIc was a power function of ρ/ρc with a power exponent n of 0.5 for ideal materials and less than 0.5 for actual materials. It was also found that ρc can be calculated simply by KIc2/(πσ02), where σ0 represented the inherent strength. This semiempirical criterion succeeded in unifying the Lchb and Gb criteria without introducing more parameters to increase the prediction accuracy of the Kc at the U‐notch root for brittle materials like ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.