Abstract
The effects of specimen geometry size on the behavior of 63Sn-37Pb solder are investigated both experimentally in the laboratory and analytically with finite-element simulations. The simulations are achieved by developing a constitutive model for solder which couples viscoplasticity with a unified damage theory. The unified damage theory is characterized by a damage surface in strain space which separates fatigue damage from inelastic damage. The damage evolution equations are derived within the framework of irreversible thermodynamics. A series of uniaxial tension, tensile creep, and strain-controlled fatigue experiments are performed to obtain material parameters for the solder damage model. The solder damage model is then implemented into a finite element code and used to simulate a uniaxial tension test on a miniature specimen and on a standard ASTM specimen (ASTM Standards, 1999, “Tension Testing of Metallic Materials,” ASTM E8-78). Predictions from these simulations are then compared with each other and with experimental results in order to examine microstructure size effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have