Abstract
A 4-noded, 48 d.o.f. doubly curved quadrilateral shell finite element based on Kirchhoff–Love shell theory, is used in the nonlinear finite element analysis to predict the damage of laminated composite cylindrical/spherical shell panels subjected to low-velocity impact. The large displacement stiffness matrix is formed using Green's strain tensor based on total Lagrangian approach. An incremental/iterative scheme is used for solving resulting nonlinear algebraic equations by Newton–Raphson method. The damage analysis is performed by applying Tsai–Wu quadratic failure criterion at all Gauss points and the mode of failure is identified using maximum stress criteria. The modes of failure considered are fiber breakage and matrix cracking. The progressive failure analysis is carried out by degrading the stiffness of the material suitably at all failed Gauss points. The load due to low-velocity impact is treated as an equivalent quasi-static load and Hertzian law of contact is used for finding the maximum contact force. After evaluating the nonlinear finite element analysis thoroughly for typical problems, damage analysis was carried out for cross-ply and quasi-isotropic cylindrical/spherical shell panels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.