Abstract

AbstractCover boxes with inspection glass are generally used outdoors for photovoltaic systems. Sometimes these boxes break, during normal use. High temperature, thermal stress, cyclic stress, and cracking contribute to weakening the polymeric inspection “glass”. The study presents an interdisciplinary analysis to discover the mode of occurrence and causes of the failure. First, the material is accurately characterized. Then its mechanical behavior is characterized in a virtual scenario that reconstructs the real external environment. The goal is to build a new cover with inspection boxes that exhibits superior life cycle behavior when exposed to harsh weather conditions and atmospheric agents. The breaking phenomena of solar panels covering boxes in PMMA (Poly Methyl Methacrylate) are examined. Environmental stress is the main responsible for cracking. Styrene is employed in the polymerization process of Sheet Molding Compound (SMC); the diffusion of this material is the main responsible for cracking. Comprehensive engineering analysis shows how the thermoplastic component fails after being exposed to atmospheric agents. The PMMA “glass” is one of the polymers most sensible to the crazing phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call