Abstract

General exotic bi-gravity, obtained in Ozkan et al. (Phys Rev Lett 123(3):031303, 2019), is a unitary parity-preserving model which describes two interacting spin-two fields in three-dimensional spacetime. Adopting a symplectic viewpoint, we investigate the dynamical structure of general exotic bi-gravity theory. In particular, by exploiting the properties of the corresponding pre-symplectic matrix and its associated zero-modes, we explicitly derive all constraints of the theory, including the integrability conditions and scalar relationships between all the parameters and fields defining the model. Then, as an application, these scalar relationships are used for studying the anti-de Sitter background. After that, we derive the gauge transformations for the dynamical variables from the structure of the remaining zero-modes, meaning that such zero-modes are indeed the generators of the gauge symmetry of the theory. Finally, by switching off one of the four coupling constants βn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta _{n}$$\\end{document} and assuming the invertibility of some of the dreibeins, we find that the general exotic bi-gravity theory has two physical degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.