Abstract

Studies on sludge formation in aluminum electrolysis cells are rare and typically do not distinguish the deposits at the center of the cell from those composing the ledge toe because low voltage lost is expected at the center of the cell. However, high amount of sludge in the center leads to the formation of a thin film in an intermediate zone between the ledge toe and this center thick sludge accumulation. Looking at sludge deposits through composition mapping and microstructure analysis coming from four aluminum cells of two different aluminum reduction technologies, major factors leading to a thin resistive film were identified. This includes the formation of a suspension on the top of the thick deposit at the center of the cell, its displacement through magnetohydrodynamic induced movement by the metal pad, and the growth and thickening of a carbide sublayer making the thin film even more resistive. Correlation between thickening of the thin film and cathode voltage drop increase was observed. The postmortem analysis performed on six laboratory experiments was found useful to support different observations made on the industrial cells at lower cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call