Abstract
Hollow ceramic microspheres of Al2O3, SiO2, and mullite have been prepared by the combination of an emulsion technique with a water extraction sol-gel method. Concentration of sol, initial droplet size, and water extraction rate of the system are found to be the important process parameters controlling the size and wall thickness of the hollow microspheres, and their influences are shown. A model that correlates the morphology of microspheres to concentration and water extraction rate is proposed and is in good agreement with the experimental observations. The capability and limitation of this process for forming hollow microspheres are demonstrated. It was shown that hollow microspheres with sizes greater than 5 μm could be readily prepared, while a limitation was met for sizes less than 1 μm, in which case solid microspheres were normally formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.