Abstract

Novel bioactive ceramic hollow microspheres with an apparent density in the range 0.8–1.0 g cm -3 have been developed as microcarriers for 3-D bone tissue formation in rotating-wall vessels (RWV). Hollow ceramic microspheres with a composition of 58–72%SiO 2, 28–42%Al 2O 3 (wt%) and an apparent density 0.8–1.0 g cm -3 were pretreated in 1.0 n NaOH for 2 h before being coated with synthesized calcium hydroxyapatite (HA) particulate sol. The HA-coated hollow microspheres were sintered for 1 h at 600, 800 and 1000°C. SEM analysis revealed that the grain size and pore size of the calcium phosphate coating increased with the sintering temperature. FTIR analysis showed that crystalline calcium hydroxyapatite was present in the coatings sintered at 600 and 800°C. When sintered at 1000°C, the coating consisted of α-tricalcium phosphate. All the coatings adhered well, independent of sintering temperature. The trajectory analysis revealed that the hollow microsphere remained suspended in a rotating-wall vessel (RWV), and experienced a low shear stress (∼0.6 dyn cm -2). Cell culture studies using rat bone marrow stromal cells and osteosarcoma cells (ROS 17/2.8) showed that the cells attached to and formed 3-D aggregates with the hollow microspheres in a RWV. Extracellular matrix was observed in the aggregates. These data suggest that these hollow bioactive ceramic microspheres can be used as microcarriers for 3-D bone tissue formation in vitro, as well as for the study of the effects of microgravity on bone cell functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.