Abstract
AbstractSeasonal snow water equivalent (SWE) accumulation in California’s Sierra Nevada is primarily governed by a few orographically enhanced snowstorms. However, as air temperatures gradually rise, resulting in a shift from snow to rain, the governing processes determining SWE accumulation versus ablation become ambiguous. Using a network of 28 snow pillow measurements to represent an elevational and latitudinal gradient across the Sierra Nevada, we identify distributions of critical temperatures and corresponding storm and snowpack properties that describe how SWE accumulation varies across the range at an hourly timescale for water years 2010 through 2019. We also describe antecedent and prevailing conditions governing whether SWE accumulates or ablates during warm storms. Results show that atmospheric moisture regulates a temperature dependence of SWE accumulation. Conditions balancing precipitable water and snow formation requirements produce the most seasonal SWE, which was observed in the (low-elevation) northern and (middle-elevation) central Sierra Nevada. The high southern Sierra Nevada conservatively accumulates SWE with colder, drier air, resulting in less midwinter ablation. These differences explain a tendency for deep, low-density snowpacks to accumulate rather than ablate SWE during warm storms (having median temperatures exceeding 1.0°C), reflecting counteracting liquid storage and internal energy deficits. The storm events themselves in these cases are brief with modest moisture supplies or are otherwise followed immediately by ablation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have