Abstract
We have performed systematic theoretical studies to elucidate the factors governing the His protonation/deprotonation state in Zn-binding sites, especially those containing the ubiquitous Zn-His-Asp/Glu triad. Specifically, we have addressed the following three questions: (1) How does the transfer of the Zn-bound His imidazole proton to the second-shell Asp/Glu carboxylate oxygen depend on the composition of the other first-shell ligands and the solvent accessibility of the metal-binding site? (2) Can any second-shell ligand with a proton acceptor group such as the backbone carbonyl oxygen also act as a proton acceptor? (3) What is the effect of the Asp/Glu in the Zn-His-Asp/Glu triad on the Zn-bound water protonation state? To address these questions, we used a combination of quantum mechanical and continuum dielectric methods to compute the free energies for deprotonating a Zn-bound imidazole/water in various Zn complexes. The calculations show that whether the Zn-bound His is protonated or deprotonated depends on (1) the solvent accessibility of the metal-binding site, and (2) the Lewis acid ability of Zn, which is indirectly determined by both the first- and the second-shell Zn ligands. The calculations also show that the effect of the Zn-His-Asp/Glu interaction on the nucleophilicity of the Zn-bound water depends on the solvent accessibility of the catalytic Zn site. Furthermore, they show that the Asp/Glu side chain in the Zn-His-Asp/Glu triad can increase the negative charge of its partner, His, and create an anionic hole that may stabilize a cation in buried cavities, provided that the Zn complex is cationic/neutral. The findings of this work are in accord with available experimental data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have