Abstract

The objectives of this study were to evaluate the effect of cyanobacterial blooms on periphyton algal succession and to identify the factors determining community dynamics in a tropical hypereutrophic reservoir. A variety of factors affecting periphytic community structure were identified at two different sites with domestic sewage and spring water inflows and two climatic periods. Microscope glass slides were used to assess periphyton growth. Sampling was carried out at short regular intervals (3–5 days) over 30 days. Climatic periods were limnologically distinct. The rainy period was characterized by an intense cyanobacterial bloom and the dry period by a less intense bloom. Periphyton biomass and growth tended to increase with colonization time during the dry period. Cyanobacteria and Bacillariophyceae were the most representative groups in the rainy period whereas Bacillariophyceae was dominant in the dry period. Community species had successional patterns in both climatic periods. The successional trajectory for sites 1 (domestic sewage) and 2 (spring water) was different in the dry period but similar in the rainy period. We concluded that the community structure over 30 days of colonization under hypereutrophic conditions was primarily determined by seasonal scale (bloom intensity), followed by successional scale (autogenic), and, finally, by the local scale (spring water and sewage inflow). Positive periphyton biological response (higher biomass and algal growth, dominance of diatoms, Cyanobacteria reduction) during small variations of bloom intensity may indicate rapid re-establishment of the community during recovery of the ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call