Abstract
AbstractAim To examine the influence of environmental variables on species richness patterns of amphibians, reptiles, mammals and birds and to assess the general usefulness of regional atlases of fauna.Location Navarra (10,421 km2) is located in the north of the Iberian Peninsula, in a territory shared by Mediterranean and Eurosiberian biogeographic regions. Important ecological patterns, climate, topography and land‐cover vary significantly from north to south.Methods Maps of vertebrate distribution and climatological and environmental data bases were used in a geographic information systems framework. Generalized additive models and partial regression analysis were used as statistical tools to differentiate (A) the purely spatial fraction, (B) the spatially structured environmental fraction and (C) the purely environmental fraction. In this way, we can evaluate the explanatory capacity of each variable, avoiding false correlations and assessing true causality. Final models were obtained through a stepwise procedure.Results Energy‐related features of climate, aridity and land‐cover variables show significant correlation with the species richness of reptiles, mammals and birds. Mammals and birds exhibit a spatial pattern correlated with variables such as aridity index and vegetation land‐cover. However, the high values of the spatially structured environmental fraction B and the low values of the purely environmental fraction A suggest that these predictor variables have a limited causal relationship with species richness for these vertebrate groups. An increment in land‐cover diversity is correlated with an increment of specific richness in reptiles, mammals and birds. No variables were found to be statistically correlated with amphibian species richness.Main conclusions Although aridity and land‐cover are the best predictor variables, their causal relationship with species richness must be considered with caution. Historical factors exhibiting a similar spatial pattern may be considered equally important in explaining the patterns of species richness. Also, land‐cover diversity appears as an important factor for maintaining biological diversity. Partial regression analysis has proved a useful technique in dealing with spatial autocorrelation. These results highlight the usefulness of coarsely sampled data and cartography at regional scales to predict and explain species richness patterns for mammals and birds. The accuracy of models appears to be related to the range perception of each group and the scale of the information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.