Abstract

Aboveground production and tissue element composition of Spartina alterniflora were compared in bareier island marshes of different age off the Eastern Shore of Virginia. The marshes were also characterized by physical and chemical parameters of the substrate. The results suggest that sediment nutrient stock do not directly control the spatial pattern of element content or production of S. alterniflora between these marshes. Elevated salinity likely limits the nitrogen uptake capability of S. alterniflora in the high marsh, which, in turn, controls leaf tissue nitrogen content of plants within individual sites. Low substrate redox potential may control the spatial pattern of nitrogen uptake between the different-age marsh sites, loading to more favorable growing conditions at the low stations of the young marsh sites where values of tissue nitrogen and production are highest. Tissue phosphorus did not differ between, or within the marsh sites. The result of a fertilization experiment suggest that nitrogen, and not phosphorus, is the primary limiting nutrient in this sytem. This indicates that nutrient limitation and other stresses work in conjunction to control tissue element content and macrophyte production at these marsh sites. Spatial variability of factors that control leaf tissue nitrogen and production is likely related to topography and grain size of an individual marsh, which is a function of marsh age. Most studies in different-age marshes have compared transplanted marshes to older, natural marshes. This work is one of few studies comparing developing and mature natural, marshes on barrier islands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call