Abstract
The main objective of this study was to investigate the effects of abiogenic and biogenic factors, and their interaction, on aggregate stability determined at different particle sizes. Soil samples with the same land use pattern were collected and fractioned into five aggregate sizes: 10–15 mm, 5–10 mm, 2–5 mm, 0.25–2 mm, and < 0.25 mm. Contents of iron/aluminum (Fe/Al) oxides, soil organic carbon (SOC), clay, and mean weight diameter (MWD) values for aggregates at different sizes were determined. The respective contributions of these factors were further estimated using path analysis. The results showed that SOC contents in A horizon declined with the increase of aggregate size. Highest amorphous iron oxide (Feo) contents were observed in 0.25–2 and 2–5 mm aggregates, but highest amorphous aluminum oxide (Alo) contents were found in 5–10 mm aggregates. Abiotic factors (Fe/Al oxides, clay) played a more important role in determining the formation of < 0.25 mm aggregates, whereas both abiotic and biotic factors play an effective role in stabilizing larger aggregates (0.25–2, 2–5, 5–10, and 10–15 mm). The organo-mineral complexes played a certain role in the stability of soil aggregates, especially the larger aggregates. We conclude that abiotic and biotic factors play variable roles in soil aggregates at different sizes, and more studies are needed to better assess their respective roles to improve our understanding of soil aggregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.