Abstract

The photosynthetic productivity of maize (Zea mays) in temperate regions is often limited by low temperatures. The factors responsible for the sensitivity of photosynthesis in maize to growth at suboptimal temperature were investigated by measuring (a) the quantum yields of CO2 fixation and photosystem II (PSII) photochemistry, (b) the pigments of the xanthophyll cycle, (c) the concentrations of active and inactive PSII reaction centers, and (d) the synthesis of core components of PSII reaction centers. Measurements were made on fully expanded leaves grown at 14[deg]C, both before and during the first 48 h after transfer of these plants to 25[deg]C. Our findings indicate that zeaxanthin-related quenching of absorbed excitation energy at PSII is, quantitatively, the most important factor determining the depressed photosynthetic efficiency in 14[deg]C-grown plants. Despite the photoprotection afforded by zeaxanthin-related quenching of absorbed excitation energy, a significant and more persistent depression of photosynthetic efficiency appears to result from low temperature-induced inhibition of the rate at which damaged PSII centers can be replaced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.