Abstract

Thylakoids isolated from winter rye (Secale cereale L. cv Puma) grown at 20 degrees C (nonhardened rye, RNH) or 5 degrees C (cold-hardened rye, RH) were characterized using chlorophyll (Chl) fluorescence. Low temperature fluorescence emission spectra of RH thylakoids contained emission bands at 680 and 695 nanometers not present in RNH thylakoids which were interpreted as changes in the association of light-harvesting Chl a/b proteins and photosystem II (PSII) reaction centers. RH thylakoids also exhibited a decrease in the emission ratio of 742/685 nanometers relative to RNH thylakoids.Room temperature fluorescence induction revealed that a larger proportion of Chl in RH thylakoids was inactive in transferring energy to PSII reaction centers when compared with RNH thylakoids. Fluorescence induction kinetics at 20 degrees C indicated that RNH and RH thylakoids contained the same proportions of fast (alpha) and slow (beta) components of the biphasic induction curve. In RH thylakoids, however, the rate constant for alpha components increased and the rate constant for beta components decreased relative to RNH thylakoids. Thus, energy was transferred more quickly within a PSII reaction center complex in RH thylakoids. In addition, PSII reaction centers in RH thylakoids were less connected, thus reducing energy transfers between reaction center complexes. We concluded that both PSII reaction centers and light-harvesting Chl a/b proteins had been modified during development of rye chloroplasts at 5 degrees C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.