Abstract

Winston et al. ([1995] J. Cell Sci., 108:143-151) have shown recently that short (6 min) exposure of spindle intact oocytes from Swiss mice to 8% ethanol induced activation of most oocytes, while disruption of the spindles in these oocytes by nocodazole, before and during ethanol exposure, completely inhibited oocyte activation. We compared the activation rates (ARs) of nocodazole-treated and intact oocytes recovered from SJL and B6D2 F1 hybrid mice under the same experimental conditions. The difference between the ARs of nocodazole-treated and intact SLJ oocytes was about the same as reported for Swiss oocytes (2% vs. 82%, respectively). In contrast, this difference was minor for B6D2 oocytes (87% vs. 100%, respectively). Moreover, 41% of these oocytes underwent activation when the spindle was absent, not only before and during, but also 2 h after ethanol exposure. Shortened exposure (2 min) of B6D2 oocytes to ethanol, however, increased the difference in the ARs of nocodazole-treated and intact oocytes (18% vs. 67%, respectively). We conclude that at least two parameters affect the necessity of the presence of the spindle during ethanol exposure for the activation of mouse oocytes. They are the genotype of the oocytes and the duration of exposure to ethanol. Under one set of these parameters the presence of the spindle is absolutely necessary, while under the other the appearance of the spindle a few hours after ethanol exposure is sufficient to allow the activation of some oocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call