Abstract

AbstractReversed‐phase liquid chromatography (LC) on C18 stationary phases provides excellent selectivity for the separation of polycyclic aromatic hydrocarbons (PAH). Recent studies have shown that several factors affect selectivity for the LC separation of PAH including phase type (monomeric or polymeric), pore diameter and surface area of the silica substrate, and surface density of the C18 ligands. In this paper the separation of eleven PAH isomers of molecular weight 278 is used to further illustrate the effect of stationary phase characteristics and shape of the solute (length‐to‐breadth ratio, L/B) on retention and selectivity. Only polymeric C18 phases with a high C18 surface coverage provided separation of all eleven isomers and the elution order of these isomers generally followed increasing L/B values. The effect of solute nonplanarity on reversed‐phase LC retention was investigated on both monomeric and polymeric phases using a series of planar and nonplanar PAH pairs. For each solute pair, the nonplanar solute eluted earlier than the planar solute, the largest selectivity factors being observed on the C18 phase with the highest percent carbon load. Based on these studies, a model is proposed to describe the retention of PAH on polymeric C18 phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.