Abstract

Brown/beige adipocytes, which are derived from skeletal muscle/smooth muscle-lineage cells, consume excess energy as heat through the expression of mitochondrial uncoupling protein 1 (UCP1). Previous studies have shown that forced expression of PR/SET domain (PRDM)-16 or early B-cell factor (EBF)-2 induced UCP1-positive adipocytes in C2C12 myogenic cells. Here, we explored the culture conditions to induce Ucp1 expression in C2C12 cells without introducing exogenous genes. Treatment with rosiglitazone (a peroxisome proliferator-activated receptor (PPAR)-γ agonist), GW501516 (a PPARδ agonist), and bone morphogenetic protein (BMP)-7 for 8 days efficiently increased Ucp1 expression in response to treatment with forskolin, an activator of the protein kinase A pathway. BMP7 dose-dependently increased forskolin-induced Ucp1 expression in the presence of rosiglitazone and GW501516; however, GW501516 was not required for Ucp1 induction. Additionally, the structurally related proteins, BMP6 and BMP9, efficiently increased forskolin-induced Ucp1 expression in rosiglitazone-treated cells. UCP1 protein was localized in cells with lipid droplets, but adipocytes were not always positive for UCP1. Continuous treatment with BMP7 was needed for the efficient induction of Ucp1 by forskolin treatment. Significant expression of Prdm16 was not detected, irrespective of the treatment, and treatment with rosiglitazone, GW501516, and BMP7 did not affect the expression levels of Ebf2. Fibroblast growth factor receptor (Fgfr)-3 expression levels were increased by BMP9 in rosiglitazone-treated cells, and molecules that upregulate Fgfr3 transcription partly overlapped with those that stimulate Ucp1 transcription. The present results provide basic information on the practical differentiation of myogenic cells to brown adipocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call