Abstract

Methods for separation of ions by ion-exchange, ion-pair, and zwitterion ion chromatography share at least one common thread – the induced formation of a cation–anion pair in the stationary phase. Selectivity can be defined as the relative ability of sample ions to form such a pair. Examples are given in anion-exchange chromatography to show the effect of variations in the geometry, bulkiness and polarity of the resin cation on selectivity. The type of resin matrix, the hydrophobic nature of the resin surface and the degree of solvation also affect chromatographic behavior. The selectivity series observed in ion chromatography seems to be best explained by the interplay of two components: electrostatic attraction (ES) and the enforced-pairing (EP) that is brought about by hydrophobic attraction and by water-enforced ion pairing. Selectivity in ion-pair chromatography (IPC) and in zwitterion ion chromatography (ZIC) is affected by both the mobile phase cation and anion. This leads to elution orders for anions that are different from conventional ion-exchange chromatography (IC) of anions where cations are excluded from the stationary phase and have little effect on a separation. The elution order of anions in ZIC is similar to that in IC except for small anions of 2− charge, which are retained more weakly in ZIC. A unique advantage of ZIC is that sample ions can be eluted as ion pairs with pure water as the eluent and a conductivity detector. The mechanism for separation of anions on a zwitterionic stationary phase has been a subject for considerable debate. The available facts point strongly to a partitioning mechanism or a mixed mechanism in which partitioning is dominant with a weaker ion-exchange component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call