Abstract
ABSTRACTGestation periods vary greatly across elasmobranch species. Differences in body size and body temperature (i.e. major determinants of metabolic rates) might explain such variation. Although temperature effects have been demonstrated for captive animals, body size effects remain undocumented. Moreover, whether metabolic rates of mothers or those of embryos affect gestation periods remains unclear. Because biological times generally scale with mass1−β, where β is metabolic scaling exponent (0.8–0.9 in fishes), we hypothesized that elasmobranch gestation periods would scale with mass0.1–0.2. We also hypothesized that regionally endothermic species with elevated metabolic rates should have shorter gestation periods than similar-sized ectothermic species if the metabolic rates of mothers are responsible. We compiled data on gestation periods for 36 elasmobranch species to show that gestation periods scale with M0.11 and m0.17, where M and m are adult female mass and birth mass, respectively. Litter size and body temperature also affected gestation periods. Our findings suggest that the body-mass dependence of metabolic rate explains some variations in elasmobranch gestation periods. Unexpectedly, regionally endothermic sharks did not have shorter gestation periods than their ectothermic counterparts, suggesting that the metabolic rates of embryos, which are likely ectothermic in all elasmobranch species, may be responsible. This article has an associated First Person interview with the first author of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.