Abstract

We investigate the electromechanical properties of ionic polymer actuators based on sulfonated block copolymers and imidazolium ionic liquids (ILs) to unveil key factors affecting the actuation performance. First, the extent of electromechanical deformation of the actuators was proven to be largely affected by the type of anion in the ILs, as understood by the anion-dependent ionic conductivity, charging time, and Young’s modulus of IL-containing polymers. In particular, upon switching the anion from hexafluorophosphate to bis(trifluoromethane)sulfonimide, more than a 2-fold enhancement in the bending strain was observed, which has not been previously reported. Second, we show that the bending strain and durability of the actuators are tunable in a straightforward manner by controlling the block architecture and molecular weight of the polymer, where the use of triblock copolymers was found to be beneficial in enhancing the actuation performance. The high mechanical strength of IL-containing triblock copo...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.