Abstract
We study factorizations of rational matrix functions with simple poles on the Riemann sphere. For the quadratic case (two poles) we show, using multiplicative representations of such matrix functions, that a good coordinate system on this space is given by a mix of residue eigenvectors of the matrix and its inverse. Our approach is motivated by the theory of discrete isomonodromic transformations and their relationship with difference Painlevé equations. In particular, in these coordinates, basic isomonodromic transformations take the form of the discrete Euler–Lagrange equations. Secondly we show that dPV equations, previously obtained in this context by D Arinkin and A Borodin, can be understood as simple relationships between the residues of such matrices and their inverses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.