Abstract

We present a method to factorize a second-order boundary value problem in a cylindrical domain in a system of uncoupled first-order initial value problems, together with a nonlinear Riccati-type equation for functional operators. This uncoupling is obtained by a space invariant embedding technique along the axis of the cylinder. This method can be viewed as an infinite-dimensional generalization of the block Gauss LU factorization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.