Abstract

In [J. Henry, A.M. Ramos, Factorization of second order elliptic boundary value problems by dynamic programming, Nonlinear Analysis. Theory, Methods & Applications 59 (2004) 629–647] we presented a method for factorizing a second-order boundary value problem into a system of uncoupled first-order initial value problems, together with a nonlinear Riccati type equation for functional operators. A weak sense was given to that system but we did not perform a direct study of those equations. This factorization utilizes either the Neumann to Dirichlet (NtD) operator or the Dirichlet to Neumann (DtN) operator, which satisfy a Riccati equation. Here we consider the framework of Hilbert–Schmidt operators, which provides tools for a direct study of this Riccati type equation. Once we have solved the system of Cauchy problems, we show that its solution solves the original second-order boundary value problem. Finally, we indicate how this techniques can be used to find suitable transparent conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.