Abstract
This paper describes a new algorithm for recovering the 3D shape and motion of deformable and articulated objects purely from uncalibrated 2D image measurements using an iterative factorization approach. Most solutions to non-rigid and articulated structure from motion require metric constraints to be enforced on the motion matrix to solve for the transformation that upgrades the solution to metric space. While in the case of rigid structure the metric upgrade step is simple since the motion constraints are linear, deformability in the shape introduces non-linearities. In this paper we propose an alternating least-squares approach associated with a globally optimal projection step onto the manifold of metric constraints. An important advantage of this new algorithm is its ability to handle missing data which becomes crucial when dealing with real video sequences with self-occlusions. We show successful results of our algorithms on synthetic and real sequences of both deformable and articulated data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.