Abstract

The representation theory of finite groups began with Frobenius's factorization of Dedekind's group determinant. In this paper, we consider the case of the semigroup determinant. The semigroup determinant is nonzero if and only if the complex semigroup algebra is Frobenius, and so our results include applications to the study of Frobenius semigroup algebras. We explicitly factor the semigroup determinant for commutative semigroups and inverse semigroups. We recover the Wilf-Lindström factorization of the semigroup determinant of a meet semilattice and Wood's factorization for a finite commutative chain ring. The former was motivated by combinatorics and the latter by coding theory over finite rings. We prove that the algebra of the multiplicative semigroup of a finite Frobenius ring is Frobenius over any field whose characteristic doesn't divide that of the ring. As a consequence we obtain an easier proof of Kovács's theorem that the algebra of the monoid of matrices over a finite field is a direct product of matrix algebras over group algebras of general linear groups (outside of the characteristic of the finite field).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call