Abstract

Activation of type I interferon (IFN-1) signaling is essential to protect host cells from viral infection. The full spectrum of IFN-I induction requires the activation of a number of cellular factors, including IκB kinase epsilon (IKKϵ). However, the regulation of IKKϵ activation in response to viral infection remains largely unknown. Here, we show that factor inhibiting hypoxia-inducible factor (HIF) (FIH), an asparaginyl hydroxylase, interacts with IKKϵ and catalyzes asparagine hydroxylation of IKKϵ at Asn-254, Asn-700, and Asn-701, resulting in the suppression of IKKϵ activation. FIH-mediated hydroxylation of IKKϵ prevents IKKϵ binding to TBK1 and TRAF3 and attenuates the cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex-catalyzed K63-linked polyubiquitination of IKKϵ at Lys-416. In addition, Fih-deficient mice and zebrafish are more resistant to viral infection. This work uncovers a previously unrecognized role of FIH in suppressing IKKϵ activation for IFN signaling and antiviral immune responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call