Abstract

A factor-graph representation of quantum-mechanical probabilities (involving any number of measurements) is proposed. Unlike standard statistical models, the proposed representation uses auxiliary variables (state variables) that are not random variables. All joint probability distributions are marginals of some complex-valued function $q$ , and it is demonstrated how the basic concepts of quantum mechanics relate to factorizations and marginals of $q$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.