Abstract

For hard tissue formation, cellular mechanisms, involved in protein folding, processing, and secretion play important roles in the endoplasmic reticulum (ER). In pathological and regeneration conditions, ER stress hinders proper formation and secretion of proteins, and tissue regeneration by unfolded protein synthesis. 4-Phenylbutyric acid (4PBA) is a chemical chaperone that alleviates ER stress through modulation in proteins folding and protein trafficking. However, previous studies about 4PBA only focused on the metabolic diseases rather than on hard tissue formation and regeneration. Herein, we evaluated the function of 4PBA in dentin regeneration using an exposed pulp animal model system via a local delivery method as a drug repositioning strategy. Our results showed altered morphological changes and cellular physiology with histology and immunohistochemistry. The 4PBA treatment modulated the inflammation reaction and resolved ER stress in the early stage of pulp exposure. In addition, 4PBA treatment activated blood vessel formation and TGF-β1 expression in the dentin-pulp complex. Micro-computed tomography and histological examinations confirmed the facilitated formation of the dentin bridge in the 4PBA-treated specimens. These results suggest that proper modulation of ER stress would be an important factor for secretion and patterned formation in dentin regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.