Abstract
AbstractIn situ tensile testing using transmission electron microscopy (TEM) is a powerful technique to probe structure‐property relationships of materials at the atomic scale. In this work, a facile tensile testing platform for in situ characterization of materials inside a transmission electron microscope is demonstrated. The platform consists of: 1) a commercially available, flexible, electron‐transparent substrate (e.g., TEM grid) integrated with a conventional tensile testing holder, and 2) a finite element simulation providing quantification of specimen‐applied strain. The flexible substrate (carbon support film of the TEM grid) mitigates strain concentrations usually found in free‐standing films and enables in situ straining experiments to be performed on materials that cannot undergo localized thinning or focused ion beam lift‐out. The finite element simulation enables direct correlation of holder displacement with sample strain, providing upper and lower bounds of expected strain across the substrate. The tensile testing platform is validated for three disparate material systems: sputtered gold‐palladium, few‐layer transferred tungsten disulfide, and electrodeposited lithium, by measuring lattice strain from experimentally recorded electron diffraction data. The results show good agreement between experiment and simulation, providing confidence in the ability to transfer strain from holder to sample and relate TEM crystal structural observations with material mechanical properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have