Abstract

We investigate the preparation of mesoscopic SnO2 nanoparticulate films using a Sn(IV) hydrate salt combined with a liquid pyrrolidone derivative to form a homogeneous precursor mixture for functional SnO2 nanomaterials. We demonstrate that N-methyl-2-pyrrolidone (NMP) plays a crucial role in forming uniform SnO2 films by both stabilizing the hydrolysis products of Sn(IV) sources and acting as a base liquid during nanoparticle growth. The hydrolysis of Sn(IV) was controlled by adjusting the reaction temperature to as low as 110 °C for 48 h. High-resolution TEM analysis revealed that highly crystalline SnO2 nanoparticles, approximately 3–5 nm in size, were formed. The SnO2 nanoparticles were deposited onto F-doped SnO2 glass and converted into dense particle films through heat treatments at 400 °C and 500 °C. This pyrrolidone-based nanoparticle synthesis enabled the production of not only crystallized SnO2 but also transparent and uniform films, most importantly by controlling the slow hydrolysis of Sn(IV) and polycondensation only with those two chemicals. These findings offer valuable insights for developing stable and uniform electron transport layers of SnO2 in mesoscopic solar cells, such as perovskite solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.