Abstract

In this work, we demonstrate platinum (Pt) nanoflowers-reduced graphene oxide (rGO) composite as an efficient electrocatalyst for methanol oxidation reaction (MOR) in acidic medium. rGO was prepared by low-cost, eco-friendly hydrothermal method and electro-deposition of Pt yielded three-dimensional large area Pt nanoflowers distributed over and among thin rGO nanosheets, thereby preventing restacking of rGO sheets. The composite exhibited outstanding electro-catalytic activity (15.3 mA cm−2), stability with CO tolerance ability (If/Ib = 6.99) which is, to the best of our knowledge, ∼2.2 folds greater than other previously reported carbon nanomaterials based catalysts. Values of If, Ib and If/Ib ratio of Pt-rGO based electrode were 13.2, 5.2 and 2.55 folds higher than only Pt respectively, which are ascribed to higher surface area of Pt nanoflowers that offers multidimensional pathways for easy diffusion of methanol to Pt, more catalytic active sites and excellent utilization of Pt for MOR. The composite shows huge potential to be used as binder free, cost-effective and durable electrocatalyst for electrochemical sensing and DMFCs applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.