Abstract

Facile, economic methods of preparing tungsten (W) nanopowder are critically needed to meet industrial demand. Herein, we report a method of preparing single-phase alpha-W (α-W) nanopowders using ammonium paratungstate (APT) as a starting material and the optimum synthesis conditions. The process involves two stages: i) the radio-frequency (RF) induction thermal plasma treatment of APT, followed by ii) thermochemical reduction at 600-900 <sup>o</sup>C. The crystallographic phase and morphological evolution of all products were systematically investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM), and the effects of the annealing temperature on the phase and particle size of the obtained powders were also evaluated. When the RF induction thermal plasma treatment was conducted with and without H<sub>2</sub>, the XRD and FESEM results showed the formation of mixed-phase α- and beta-W (β-W) nanopowder and WO<sub>3</sub> nanopowder, respectively. Single-phase α-W nanopowder was achieved by annealing the WO<sub>3</sub> nanopowder in an H<sub>2</sub> reductive atmosphere at 700 <sup>o</sup>C for 10 min, resulting in homogenous nanoparticles with a small particle size (d50) of 21.16 nm without any aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call