Abstract

The facile creation of high-performance single-atom catalysts (SACs) is intriguing in heterogeneous catalysis, especially on 2D transition-metal dichalcogenides. An efficient spontaneous reduction approach to access atomically dispersed iron atoms supported over defect-containing MoS2 nanosheets is herein reported. Advanced characterization methods demonstrate that the isolated iron atoms situate atop of molybdenum atoms and coordinate with three neighboring sulfur atoms. This Fe SAC delivers exceptional catalytic efficiency (1 atm O2 @ 120°C) in the selective oxidation of benzyl alcohol to benzaldehyde, with 99% selectivity under almost 100% conversion. The turnover frequency is calculated to be as high as 2105 h-1 . Moreover, it shows admirable recyclability, storage stability, and substrate tolerance. Density functional theory calculations reveal that the high catalytic activity stems from the optimized electronic structure of single iron atoms over the MoS2 support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.