Abstract

As a member of the 2D materials family, 2D metal nanosheets (metallenes) have received increasing attention due to their intriguing properties distinct from those of graphene and other inorganic 2D nanosheets. However, the synthesis of metallenes is still challenging, owing to the lack of an efficient synthetic approach. Here we present a facile one-pot approach to the controlled synthesis of Pd nanosheets. A key feature of this process is a stepwise reaction using 2,4,6-trichlorophenyl formate (TCPF); TCPF emits carbon monoxide gas, which acts as both a reductant and a surface capping agent, promoting the anisotropic 2D growth of the Pd nanosheets. Photoemission spectroscopy revealed some peculiar features of the surface charge and valence band states due to suppressed electron transfer at the 2D surface. This surface state caused improved catalytic activity for the hydrogen evolution reaction compared to that of bulk Pd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call