Abstract

A method for separation and calculation of gate oxide and surface state charges in CMOS transistors have been developed, leading to a significant improvement of the analysis of CMOS integrated circuit instabilities. In order to demonstrate the usefulness of the method, an analysis of instabilities in transistors subject to high electric field and high temperature-bias stress has been carried out. Four instability mechanisms associated with high electric field stress are observed. Successively we consider a positive gate oxide charge increase due to hole tunneling from the silicon valence band into oxide hole traps (in case of negative gate bias), electron tunneling from oxide electron traps into the oxide conduction band (in case of positive gate bias), and a surface state charge increase due to tunneling of electrons from the metal to the silicon (in case of negative gate bias) or from the silicon to the metal (in case of positive gate bias). In addition instabilities associated with high temperature-bias stress are observed: drift of mobile ions in the gate oxide, increase of positive trapped charge in the gate oxide and simultaneous increase of the surface state and negative gate oxide charges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call