Abstract

Photo-responsive synergetic therapeutics achieved significant attraction in cancer theranostic due to the versatile characteristics of nanomaterials. There have been substantial efforts in developing the simplest nano-design with exceptional synergistic properties and multifunctionalities. In this work, biocompatible Ti2C MXene nano bipyramids (MNBPs) were synthesized by hydrothermal method with dual functionalities of photothermal and photodynamic therapies. The MNBPs shape was obtained from two-dimensional (2D) Ti2C nanosheets by controlling the temperature of the reaction mixture. The structure of these Ti2C MNBPs was characterized by a high-resolution transmission electron microscope, scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. The Ti2C NBPs have shown exceptional photothermal properties with increased temperature to 72.3 °C under 808 nm laser irradiation. The designed nano bipyramids demonstrated excellent cellular uptake and biocompatibility. The Ti2C NBP has established a remarkable photothermal therapy (PTT) effect against 4T1 breast cancer cells. Moreover, Ti2C NBPs showed a profound response to UV light (6 mW/cm2) and produced reactive oxygen species, making them useful for photodynamic therapy (PDT). These in-vitro studies pave a new path to tune the properties of photo-responsive MXene nanosheets, indicating a potential use in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.